Quality Assessment and Simulative Performance Measures of Content Based Image Retrieval System
نویسندگان
چکیده
Content based image retrieval (CBIR) from large resources has become a dominant research field and found wide interest nowadays in many applications. In this thesis work, we design and implement a content based image retrieval system that uses color and texture as visual features to describe the content of an image region. We use k-nearest neighbor (knn) and HSV color model to extract feature of images. Our contribution is to design ̳knn‘ feature vectors. We feature of images used to create database are color correlogram, color moments, gabor filter for mean amplitude & energy calculation, wavelet moments and histogram. The similarity measures used in this thesis to find similarity between query image & database images are Manhattan distance, Euclidean distance and Relative deviation. We segment the images into five classes consist images of Dinosaur, Bus, Beach, Flower and Sunset. We combine various features of images to construct ̳knn‘ feature vector. The proposed CBIR system using various feature of ̳knn‘ has the advantage of increasing the retrieval accuracy in form of Precision and Recall. The experimental evaluation of the system is based on a 250 color image database. From the experimental results, it is evident that developed system performs significantly better and faster compared with other existing systems like HSV. Keywords— CBIR; HSV; KNN; manhattan distance; euclidean distance.
منابع مشابه
Image retrieval using the combination of text-based and content-based algorithms
Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...
متن کاملPerformance Evaluation of Medical Image Retrieval Systems Based on a Systematic Review of the Current Literature
Background and Aim: Image, as a kind of information vehicle which can convey a large volume of information, is important especially in medicine field. Existence of different attributes of image features and various search algorithms in medical image retrieval systems and lack of an authority to evaluate the quality of retrieval systems, make a systematic review in medical image retrieval system...
متن کاملSemiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملA Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016